Share Love

Baryonic matters or just ordinary matters are the kinds of matters that we can see, touch, feel, taste, observe like electrons,
protons, neutrons, atoms. Even our body, as well as everything visible around us, is baryonic matters. Whenever we take this entire universe into an account, we find the existence of a matter which is non-baryonic, popularly addressed as ‘Dark matter’. Dark matter doesn’t commonly react with an ordinary matter and even invisible to us. Scientists and cosmologists are pretty sure they exist though.


Audible Range Of Human Ear

Visible Range Of Human Eye

Limitations Of The Human Eye And Ear

The same goes for dark matter too. Dark matter and dark energy play an important role in the stability of our universe.



(You may skip this section if you are fixated to know more about like what dark matter is, Einstein’s biggest blunder, dark matter boon or curse to humanity, Dinosaurs were killed by dark matter, evidence for dark matter, possible candidates for dark matter and many more.)

Furthermore, You will find a summary of the history of dark matter in the section on what dark matter is.

Sir Issac Newton published a comprehensive ‘Theory Of Gravity’ in 1687. This universal law of Gravitation explained the Gravitational binding energy of stars, planets, etc.

Sir Issac Newton

Soon after Newton’s Theory of universal gravity, some astronomers and cosmologists started hypothesizing the object that might not emit light but traces could be detectable through the gravitational impact on bright and massive objects like stars and planets.


The hypothesis robustness was accelerated in the 1700s when Pierre Laplace conceptualized that some objects might be massive enough to trap light particles, more like the concept of the black hole.

In 1884, Lord Kelvin intended to measure the mass of the galaxy through the velocity dispersion of stars orbiting around the center of the galaxy. He estimated that mass of galaxies that he determined was different from the mass of visible stars. Lord Kelvin thus concluded that perhaps the great majority of stars may not emit or reflect light, maybe dark bodies ( invisible bodies ). Some general public even termed this as ghost mass. This was noteworthy.

Lord Kelvin

By this point, astronomers were confident that there was much more in the universe except just visible bodies. Lord Kelvin’s discovery led to many debates among astronomers like French astronomer Henri Poincaré in 1906, and he referred that matter as an unknown matter.

The Pretty Mysterious Universe

In 1920, Edwin Hubble observed that the universe seemed to be expanding rather than being motionless. Edwin even noticed that we are addressing galaxies in terms of nebulas. Edwin turns out to be right. Edwin studied about Coma cluster and calculated the mass of it.

Edwin Hubble

The foremost existence of dark matter using stellar velocities was proposed by Dutch astronomer Jacobus Kapteyn in 1922. Jan Oort also hypothesized the existence of dark matter in 1932. Dutch astronomer Jan Oort measured the orbital speed of stars within the Milky Way and found they moved too quickly to be explained by the observed mass of the galaxy.

Jacob Kapteyn

The major aspect astronomers hoped to measure was the mass of a galaxy. Something as massive as galaxies can’t be measured directly. There are several proved and tested scientific theories to calculate the mass of a distant galaxy. One method is to measure the light intensity or luminosity. The more luminous a galaxy, the more mass it possesses. Another option is to calculate the rotation of a galaxy’s body by tracking how quickly stars within the galaxy move around its center. Variations in rotational velocity should indicate a region of varying Gravity and therefore mass.

The remarkable contribution to the dark matter stuff was in 1933 by Swiss astrophysicist Fritz Zwicky while working at the California Institute Of Technology.

Coma Cluster

The Coma cluster is a galactic supercluster containing more than 1,200 galaxies. Fritz Zwicky studied the motion of galaxies within a coma cluster using Virial theorem and found that galaxies were moving too quickly to remain gravitationally bound within the cluster. Zwicky estimated its mass based on the motions of galaxies approaching its edge and compared that to an estimate based on its brightness and number of galaxies. After several days of restlessness and maths, Zwicky calculated the cluster mass was more than 400 times larger than that of Edwin Hubble’s calculation. Edwin Hubble’s calculation was based more upon visually observable bodies. Zwicky called this unseen mass Dunkle Materie (‘dark matter’). Zwicky concluded that if his observation and measurement are true, then mass discrepancy is all due to dark matter( invisible matter ) which is present in a pretty much greater amount than ordinary matter (Luminous matter ). The dark matter was known by ‘The Missing Mass Problem’ at that time.

Fritz Zwicky

In the 1930s, Knut Lundmark was again measuring the difference of the mass that we calculate to be in galaxy compared to the amount of mass suggested by light. This is called mass to light ratio. He found that it was somewhere 100 times more mass than light we could see for galaxy called Messier 81. He concluded that the distribution could only properly be explained if the galaxies contained vast amounts of light-blocking dark clouds.

Knut Lundmark

Over the next couple of decades, the virial theorem was applied to numerous galaxy clusters with similar results. The virial theorem is a statistical calculation based upon certain assumptions like the clusters are gravitationally bound. That’s why It didn’t receive much popularity for decades. Zwicky’s calculation and maths were taken as absurd. Nevertheless, Zwicky did correctly conclude from his calculation that the bulk of the matter was dark. However, there was one thing that couldn’t be denied and also supported dark matter exists and that was the galactic rotation curve.

The rotation curve shows how faster the stars are rotating around the center of the galaxy at an increasing radius in the galaxy.

In 1939 Horace W. Babcock published his Ph.D. thesis in which he measured the rotation curve of Andromeda galaxy which suggested that the mass to luminous intensity (mass to light ratio) increases radially.

Horace W. Babcock

( The rotation curve will be described more fully in evidence for the dark matter section. )

By 1957 Hendrick C. Van de Hulst, Ernst Raimond, and Hugo van Woerden were the first people to obtain a rotation curve in Andromeda galaxy, not in optical light but radio light. They were detecting the emission in radio wavelength at 21 centimeters from Hydrogen gas in the Andromeda galaxy. Even this curve was flattened supporting the existence of dark matter.

In 1970, Ken Freeman found rotation curves for several galaxies that disagreed with expectations based upon the assumption that the galaxies consisted of stars, gas, and nothing else. Freeman suggested that these galaxies, like the Coma cluster, observed much earlier by Zwicky, contained considerably more invisible dark matter than the luminous matter.

In 1974, Ostriker et al. stated that the currently observed rotation curves strongly indicated that the dark matter is present in large amounts.

In 1980, An influential paper presented Vera Rubin and Kent Ford’s work of the 1960s and 1970s upon the rotation curve of spiral galaxies.

Vera Rubin

Their discoveries were based on a new sensitive spectrograph. It could measure the velocity curve of edge-on spiral galaxies better than it had ever been achieved before.
It showed that most galaxies must contain about six times as much dark as visible mass to maintain such quick rotation and stability. Otherwise, They should throw themselves into pieces spinning that quickly.

By around 1980, the apparent need for dark matter was widely recognized as a major and longest-standing unsolved problem in astrophysics.


From then on (the 1980s), the theory of dark matter has been progressing and getting improved as we’ve learned more about our Universe leading to  Gravitational lensing, questioning the validity of Newtonian mechanics and theory of motion, as well as modifying Newtonian mechanics. ( We will discuss modification of gravity at the end of this article. )

Now the most scientists and cosmologists are quite certain that dark matter is abundant in the universe as well as it is not an ordinary matter as it neither absorbs light nor it reflects light. The impact of dark matter is greatly seen on the structure of our galaxies and many more else.

This is how dark matter has a history over centuries back.


For centuries Scientists/cosmologists/astrophysicists/astronomers were surprised to discover that Gravitational impacts that stars, planets, and galaxies possessed were not sufficient from the mass we observed through visible stars and bodies. It means there is some kind of mass that doesn’t reflect light but responsible for holding such strong Gravitational impact and structure. This is where the concept of dark matter arises.

Dark matter is the form of matter that accounts for approximately 85% of the total matter in our universe.

Dark-Matter Percentage

According to Lambda – CDM model of cosmology, the total mass-energy of the universe contains 5% ordinary matter and energy, 27 % dark matter, and 68 % the form of energy referred to as dark energy. The dark energy is responsible for making the Universe larger in essence acceleration of space expansion.

We can see only those objects which either absorb/reflect light or itself is a source of light.

Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn’t absorb, reflect or emit electromagnetic radiation (like Light ),  and is therefore difficult to detect.

Dark matter has not been observed directly yet. According to astrophysicists dark matters barely show its effect with ordinary baryonic matter and radiation, except gravity. This is why Dark matter is thought to be non- baryonic.


The particles like electrons, protons, quarks, atoms, etc form matter, while antiparticle like anti-electron ( Positron ), antiproton, antiquark, etc form antimatter. For every particle, there exists antiparticle too. As an analogy
The squared root of 9 has two answers i.e. +3 and -3. And these values cancel each other resulting in zero.


Matter and antimatter are identical but with the opposite property. One is positively charged, then another one is negatively charged. Whenever they meet each other, they annihilate each other producing unique gamma rays. Since dark matter is abundant in the universe, there must be gamma rays everywhere in the galaxy clusters. This is not the case though. It proves that dark matter is not antimatter.


Yes. Dark matter is around us. Every second more than millions of dark matter are passing through everyone around us as well as the objects. Baryonic particles like electrons, protons, neutrons, etc give rise to atoms. Atomic combinations led us to molecules, whereas molecules combination is what we call the building block of body i.e. cells. Our body contains millions and millions of cells and atoms.

According to scientists, preferring living bodies as detection of dark matter will not be safe. Scientists theorized that dark matters can interact with ordinary matter in clumps or so-called macros.

The energy of one macro can achieve the same energy as the bullet fired from a 22 caliber rifle. The clumps of dark matter are invisible as well as very very very few micrometers in size.

Sun’s Temperature

However, Collision of dark matter with the human body will produce temperature equivalent to 1.74 times greater than the temperature of our sun that works out to be 10 million degrees, Kelvin.

By some crazy scientific experiment, if we can transform every matter of our body into dark matter, then entire particles of our body will disintegrate (Literally, the disintegration of every atom). The disintegrated particles will circle in an elliptical orbit at the Earth’s core ( Earth’s center) with the speed of 3 km / s because of the effect of Earth’s Gravity as this speed is insufficient to escape Earth’s gravity. Moreover, the fundamental forces of our universe will not show up any effects that do with an ordinary matter. And of course, every particle that was once we will be invisible.

disintegrated particles
Disintegrated Particles

When dark matters interact with our body particles, dark matters transform themselves into cylinders of plasma and in such extreme temperatures, it is enough to make a plasma hole throughout our body. In case an abundant amount of dark matters collide with the human body, then our entire body particles will disassociate turning into complete plasma.

Even though dark matter counts out to be more than millions around us, we have never encountered someone who died due to dark matter so far. The science behind this has got an explanation with very basic terminology called density. The mas contained by a body per unit volume is called density.

For years, scientists were pretty sure that our galaxy cluster has six times more dark matter than ordinary ones. The most notable thing here is the concentration/density of dark matter. The density of dark matter is maximum at the center of the galaxy, while quite low at the outskirts.

Milky Way Galaxy

We live in the Milkyway galaxy. Our Solar system consists of numerous asteroids, comets, and planets. Our Solar system is 25,000 light-years away from the center of the Milkyway galaxy.

1 Light Year = 9.46 × 10^12 KM

Even if we add up all the masses of dark matter of our Solar system, it will be just 10^17 kilograms which are not even massive as an average size of the asteroid.

Furthermore, the Density of the human body is 1000 kg / m ^3. Meanwhile, the density of dark matter is just 10^-12  kg /m^3. 
The density is a very basic term, and we can even calculate the amount of dark matter passing through the human body.

Scientists estimated that 10^-22 kilograms of dark matter pass through us at any given point of time. Likewise, every second it will sum up to 2.5 × 10^-22 kilograms. Each year around 10 ^-8 kilograms, while In 81 years ( the average human life expectancy ), it will be just around 1 milligrams.

At such a small amount, dark matter is nothing harmful to us.


Dinosaurs Extinction

According to Harvard University Physicists Lisa Randall and Matthew Reece, dark matters could have been the indirect causes of mass extinction of lives and properties. It may happen again.

Matthew Reece
Lisa Randall

When Dinosaurs ruled the Earth, the planet was on a completely different side of the galaxy.

Dinorsaurs Extinction

Our Sun orbits the galaxy’s center, completing its rotation every 250 million years or so. Many of the most iconic dinosaurs roamed Earth when the planet was in a very different part of the Milky Way.

Michael Rampino (  Geologist and Professor of Biology and Environmental Studies at New York University ) believes that once every 26 to 30 million years, our Solar system will face a dense disc of dark matter. These dark matters settle into Earth’s core which makes dark matter clumps denser destroying each other. This destruction led to an increase in temperature which then heats the Earth’s core provoking magma to cause strong volcanic eruptions. The aftermath of these volcanic eruptions may give rise to the formation of new continents and the destruction of countless lives. Considering the preciousness of time, then Dinosaurs explored our blue and green globe for about 165 million years. Maybe after 30 million years, dark would end up half of the lives from Earth. Maybe after 150 million years, there will be no more existence of humans. Who knows?


★ Galactic rotation curve: The rotation curve of the disc galaxy is a plot of orbital speeds of visible stars or gas in that galaxy versus their radial distance from that Galaxy’s center. This is also called a velocity curve. To make a rotation curve, one calculates the rotational velocity of stars along the length of a galaxy by measuring their Doppler shifts and then plots this quantity versus their respective distance away from the galactic center.

For simplicity, This is just a graph of distance versus velocity. We can even do this with our solar system. Through visible light observation Spectra ( mass to light ratio ), Most galaxies have the bright centers as seen in normal light and keep on dimming as we move far away from the Centre. The luminous mass density of a spiral galaxy decreases as one goes from the center to the outskirts. If luminous mass were all the matter, then we can model the galaxy as a point mass in the center and test masses orbiting around it. This does mean the most of the stars/mass is located at the center of the galaxy. If that’s the case, one would expect stars far from the center to move slower than stars near the center as from Kepler’s second law, it is expected that the rotation velocities will decrease with distance from the center, similar to the Solar System. The Kepler’s law failed to explain in case of the galaxy. Prediction and observation vary a lot.

In 1939, Babcock observed the scenario to be the complete opposite. Invariably, it is found that the stellar rotational velocity remains constant giving us a flat curve. Though his measurements weren’t precise enough, it would still be impossible to get an increasing flat curve.

Curve Predicted VS Observed

It describes that the rotation speed is found not to decrease with increasing distance from the galactic center. This signifies that stars moved at the same speed regardless of their distance from the galactic center, implying that the galaxy must be surrounded by Halo of dark matter which means Galaxy’s mass is not concentrated in the center of the galaxy. Moreover, In the case of our solar system, Kepler’s second law works pretty perfectly because the majority of the mass of our solar system is concentrated in the sun alone, around 99 % of the total mass of our solar system. The circumstances are pretty different for galaxies as they contain a massive amount of dark matter even on the outskirts regardless of mass located just at the center.

Mathematically expressing then, the mass must continue to increase as the rotation speed satisfies the equation  

                       V ^ 2 = GM / r 
we get this by equating centrifugal force with gravitational force.

where M is the mass within radius r, G is Newton’s universal Gravitational constant, and V is the rotation velocity.

This is the case with the Andromeda galaxy and has been observed by many astronomers like Max Wolf and Vesto Slipher. This has been applied to numerous other galaxies a plethora of times leaving similar results every time, and thus supporting the presence of dark matter.

★ Stability of galaxies: Gravitational force plays an important role in the stability of our universe. Our universe consists of thousands of galaxies in which we can see billions of stars, asteroids, numerous planets, and many more else. The way our universe functions is adorable like the rotation of planets around the sun, rotation of the moon around the planet, etc. These phenomenons are quite perfect.

Even if we add up the gravitational impacts of stars, galaxies, dust, planets, etc, then it seems like they have some kind of mysterious Gravity. All the baryonic masses that we see in our universe are insufficient to produce gravitational binding energy that could bind and hold all the stars, galaxies, and planets and dust together.

Newton’s Law Of Universational Gravitation

It is only possible if galaxies consist of five to six times more mass than we can observe, meaning that galaxy, stars, planets would scatter/fly away in such poor gravitational binding energy as suggested by visible bodies.

But in our universe we see, stars, planets, and else following the pretty regular gravitational phenomena leading to the formation of complex galaxies and complex structures like our own Milky way galaxy.

Hence, The Gravitational binding energy supports the existence of dark matter. We are still avoiding one thing. How we could ignore the fact that the universe is expanding. Here comes the energy, the dark energy.


Dark energy is even more mysterious and strange than dark matter. Anciently, Physicists had assumed that the attractive force of gravity would slow down or even retract and collapse in on itself at some point over time. When scientists tried to measure the rate of deceleration, they found that not only everything moving apart from each other, but the universe expansion also seems to be accelerating.

Expanding Universe

Scientists now think that the accelerated expansion of the universe is driven by the kind of repulsive force generated by quantum fluctuations ( in otherwise empty space ). Empty space doesn’t mean there is no kind of energy. Not only this, the force even getting stronger by time. Therefore, Scientists called this mysterious force ‘Dark energy’. Scientists have still not much clue about what dark energy is. According to one approach, dark energy is a fifth type of fundamental force ( electromagnetic force, gravitational force, Nuclear force )  called quintessence, which fills the universe like a fluid.

Dark energy is the repulsive force ( antigravity ) which tends to accelerate the expansion of the universe, while dark matter is responsible for attractive force ( Gravity) which binds the stars, galaxies, planets, and else in a stable state.

Einstein’s Biggest Blunder

In 1915, Albert Einstein discovered the ” General Theory of Relativity “. Einstein believed the universe to be static and eternal. Einstein’s field equation is an important aspect of this theory. It is the set of the equation that relates the curvature of space-time to the amount of matter and energy moving through a region of space-time.

Albert Einstein Field Equation

Einstein wasn’t happy with this equation as this equation clarifies that the universe seemed to be stretching or contracting which was against Einstein’s static universe belief.

Albert Einstein Modified Equation

Einstein added one more term to the left side of his equation, and he called it the cosmological constant.

In 1929, Edwin Hubble examined how the wavelength of light emitted by distant galaxies shifts towards the red end of the electromagnetic spectrum as it travels through space. He found that fainter, more distant galaxies showed a large degree of redshift and for closer not much. Hubble concluded that the redshift occurs because the wavelength of the lights is stretched as the universe expands, and thereby the universe itself is expanding. More recent studies even showed that the expansion rate is accelerating.

Edwin Hubble

Thus, Einstein called cosmological constant his biggest blunder. According to Einstein, the constant would be the repulsive force that stabilizes the inward pull of gravity. But this is not the end.

Albert Einstein

Since our Universe is expanding and accelerating, the adding in cosmological constant could effectively explain dark energy. Einstein’s blunder even turned out to be describing the actual scientific phenomena of our universe. However, Scientists are still not sure why this weird force exists in the universe.

★ Gravitational Lensing: According to Einstein’s General Theory of Relativity, the space-time can bend, flex, and warp under the influence of mass and energy. One of the most remarkable components of Einstein’s theory of general relativity is that Gravity bends light. When astronomers refer to lensing, they are talking about an effect called gravitational lensing.

Gravitational lensing is a phenomenon in which massive object like galaxy clusters can act as a lens and is capable of bending the light as well as distorting the images of objects lying beyond that mass forming multiple images. This effect is analogous to that produced by the lens. How some lenses can converge or diverge light, while stick submerged in water appears bent. Similarly, lenses are used in a magnifying glass work by bending light rays that pass through them in a process known as refraction through which one can focus the light, wherever he desired to. The gravitational field of a massive object covers vast region into space that causes light rays passing close to that object to be bent and refocused somewhere else giving arise to multiple images.

Refraction Of Light

Large galaxy clusters contain massive amounts of ordinary matter and dark matter as well, within and around the galaxies. Galaxy clusters are massive and can act as strong gravitational lenses. Although astronomers cannot see dark matter, they can detect its influence by observing how the gravity of massive galaxy clusters, which contain dark matter, bends and distorts the light of more-distant galaxies into arcs located behind the cluster. The lensing effect is directly proportional to mass ( the lighter the object, the less lensing is observed and vice versa ). This method can be used to measure the total mass of the cluster by measuring the distortion geometry of light. Once you cancel out the gravitational effect of visible matter, what you have left is the gravitational effect of dark matter. In many clusters, this method has been used and it is estimated that a large fraction of the mass of the clusters is composed of dark matter. In a lot of cases where this has been done, the mass-to-light ratios obtained always correspond to the dynamical dark measurements of clusters, implying that the Universe appears to have about five times more dark matter than regular matter.

Virtual images of the galaxy

The lensing effects result in multiple copies of images as we discussed earlier. Likewise, By analyzing the distribution of multiple image copies, Scientists have been able to map the distribution of dark matter around the different galaxy clusters. And now, by studying where that lensing appears in the sky, an international team of scientists has released a detailed, 3D map distribution of dark matter.

Here’s one cool story of Hubble space telescope showing the application of Gravitational Lensing. ( You may skip this. )

Through Hubble Space telescope, Astronomers were successfully able to hunt a quasar ( the region around active black holes where superheated matters emit tons of light ) that almost perfectly aligned behind an entire massive galaxy. The gravity from the galaxy bends the quasar’s light in such a way that it is visible to Hubble; in fact, galaxies can magnify the quasar and copies it’s images four times. The four images were not identical. They get distorted by dark matter that warps the space that quasar’s light travels through. The four distorted images fascinated astronomers, providing the evidence for dark matter.

Furthermore, Multiple images of an object appear when the lens is extremely massive, and such lensing is called strong lensing. However, Even small light objects like we, planets, etc can make lensing effect with minute distortion. The lensing effect takes place on all scales. By definition, everything in the universe can act as a gravitational lens; your observational technique just has to be sensitive enough to detect the lensing. Weak Gravitational lensing has even been proved by characterizing the mean distribution of dark matter through studying apparent shear deformation of the adjacent background galaxies. The mass-to-light ratios obtained correspond to dark matter densities predicted by other large-scale structure measurements.

★ Cosmic Microwave Background Radiation:  In 1964, astronomer Arno Penzias and Robert Wilson were working on radio telescope which could detect microwaves and radio waves coming from space. They accidentally found the evidence of big bang theory called cosmic microwave background radiation. These are the microwaves which were the afterglow of big bang when our universe was way too young, and even present everywhere in space now too and will. This was the first direct proof of ‘The Big Bang Theory’.

In the early universe, the ordinary matter was ionized and interacted strongly with radiation via Thomson Scattering. Dark matter does not interact directly with radiation, but it does affect the CMB by its gravitational potential (mainly on large scales), and by its effects on the density and velocity of ordinary matter. Therefore, Ordinary matter and dark matter evolve differently with time and leave different imprints on the cosmic microwave background. The cosmic microwave background is very close to a perfect blackbody but contains very small temperature anisotropies of a few parts in 100,000. A sky map of anisotropies can be decomposed into an angular power spectrum, which is observed to contain a series of acoustic peaks at near-equal spacing but different heights.

The observed CMB angular power spectrum provides powerful evidence in support of dark matter, as its precise structure is well fitted by the Lambda-CDM model.


In general, scientists know more about what dark matter is not rather than what it is. Noone has observed dark matter directly yet. However, they still got some possible hypothetical candidates for dark matter.

Hypothetical Hypothesis

Since dark matter is thought to be non- baryonic, the subatomic particles that go beyond the standard model of particle physics could account for these observations.

 1. The WIMPs

The most famous/popular one is WIMPs ( Weakly interacting massive particles ). It is a hypothetical particle but looks very promising in this case. It will be different from ordinary matter as we expect to be non- baryonic i.e. doesn’t interact with electromagnetic radiations. According to WIMPs analysis, it clarifies there must be about five times more of these matters than normal matter, which may collide with the abundance of dark matter that we observe in the Universe. It reflects that we should be able to detect them through their collisions as this would cause the charged particles on Earth to recoil, producing light that we can observe in experiments such as XENON100.

2. The Axion

Axions are low-mass, slow-moving particles that don’t have a charge but can interact weakly with other matter. It is quite bothersome to detect but not impossible still. The particular kind of axions like one with specific mass would be able to explain the invisible nature of dark matter. And if axions do exist ( heavier or lighter matters not ) they would be able to decay into a pair of a light particle (photons), which means we could detect them by looking for such pairs. The ‘ Axion Dark Matter Experiment’ works upon this principle and looking for the search for dark matter.

Likewise, they may even be supersymmetric particles or some kind of neutrino or any number of other exotic particles. That has been postulated but all remain in the hypothetical realm having not quite confirmed by experiments.


In 1983, Mordehai Milgrom predicted that what if the gravity is not due to dark matter but the failure of Newtonian mechanics ( theory of motion, the universal theory of gravity ) itself.

Mordehai Milgrom

He proposed the modification of Newton’s universal Gravity known as Modified Newtonian Dynamics ( MOND). The idea is that all of the observations could be explained just by considering simple correction like Force equals mass times acceleration squared rather than just mass times acceleration. In the same manner, Newton’s law of gravitation might vary between short distances like our solar system and large distance like entire galaxies clusters. This proposal doesn’t need only the modification of Newtonian mechanics but also with modification of Einstein’s ‘General Theory Of Relativity’. By the 1980s, several alternative gravitational models appeared. These models worked well for dwarf galaxies, but they did pretty badly with things like galactic clusters. New proposals keep on popping and helping us figure out the mystery of dark matter.


Some astrophysicists even argue whether dark matter is a matter or not, but they are quite sure that whatever it may be it behaves very similarly to Gravity. Scientists are trying hard to detect dark matter particles in the sky as well as even in underground mines. In underground mines, they are waiting for possibilities that dark matter particles that go through Earth would hit denser material and leave traces of it. In Sky, they wish for possibilities that dark matter particles Collision would create high energy light so that it could be detectable through special ‘Gamma-Ray Telescope’. Likewise, The Large Hadron Collider in Switzerland has contributed much to the mystery of dark matter. But with every theory and technology development, the secret of invisible cosmos will come closer to being revealed.

— Sudip Karn

References :

Share Love